วันพฤหัสบดีที่ 9 กุมภาพันธ์ พ.ศ. 2555

ประวัตินักคณิตศาสตร์ของโลก ต่อ

เลออนฮาร์ด ออยเลอร์


ออนฮาร์ด ออยเลอร์ อายุ 49 ปี (รูปสีน้ำมันโดย Emanuel Handmann ปีค.ศ. 1756)เลออนฮาร์ด ออยเลอร์ (Leonhard Euler) [oi'lər] (15 เมษายน พ.ศ. 2250 - 18 กันยายน พ.ศ. 2326) เป็นนักคณิตศาสตร์และนักฟิสิกส์ชาวสวิส เขาได้ชื่อว่าเป็นนักคณิตศาสตร์ที่ยิ่งใหญ่ที่สุดคนหนึ่งเท่าที่เคยมี เลออนฮาร์ด ออยเลอร์ เป็นคนแรกที่ใช้คำว่า "ฟังก์ชัน" (ตามคำนิยามของไลบ์นิซ ใน ค.ศ. 1694) ในการบรรยายถึงความสัมพันธ์ ที่เกี่ยวข้องกับตัวแปร เช่น y = F(x) เขายังได้ชื่อว่าเป็นคนแรกที่ประยุกต์แคลคูลัสเข้าไปยังวิชาฟิสิกส์
ออยเลอร์เกิดและโตในเมืองบาเซิล เขาเป็นเด็กที่มีความเป็นอัจริยะทางคณิตศาสตร์ เขาเป็นศาสตราจารย์สอนวิชาคณิตศาสตร์ที่เซนต์ปีเตอร์สเบิร์ก และต่อมาก็สอนที่เบอร์ลิน และได้ย้อนกลับไปยังเซนต์ปีเตอร์สเบิร์กอีกครั้ง เขาเป็นนักคณิตศาสตร์มีผลงานมากมายที่สุดคนหนึ่ง ผลงานทั้งหมดของเขารวบรวมได้ถึง 75 เล่ม ผลงานของเขามีอิทธิพลอย่างมากต่อผลงานทางคณิตศาสตร์ในศตวรรษที่ 18 เขาต้องสูญเสียการมองเห็น และตาบอดสนิทตลอด 17 ปีสุดท้ายในชีวิตของเขา ซึ่งในช่วงนี้เองที่เขาสามารถผลิตผลงานได้ถึงเกือบครึ่งหนึ่งของผลงานทั้งหมดของเขาดาวเคราะห์น้อย 2002 ออยเลอร์ ได้ถูกตั้งชื่อเพื่อเป็นเกียรติแก่เขา

คาร์ล ฟรีดริช เกาส์ 



โยฮันน์ คาร์ล ฟรีดริช เกาส์ นักคณิตศาสตร์ชาวเยอรมนี เกิดเมื่อวันที่ 30 เมษายน ค.ศ. 1777 
เสียชีวิต 23 กุมภาพันธ์ ค.ศ. 1855 เป็นตำนานหนึ่งในนักคณิตศาสตร์ผู้ยิ่งใหญ่ที่สุดในประวัติศาสตร์
ได้รับฉายาว่า "เจ้าชายแห่งคณิตศาสตร์" (Prince of Mathematics) เนื่องจากอุทิศผลงานในทุก ๆ ด้านของคณิตศาสตร์ในยุคสมัยของเขา นอกจากนี้เกาส์ยังมีผลงานสำคัญทางด้านฟิสิกส์ โดยเฉพาะด้านดาราศาสตร์อีกด้วย
      เกาส์เกิดที่เมืองบรันสวิก (Braunschweig) ในวัยเยาว์เป็นที่กล่าวขวัญกันอย่างกว้างขวางว่า  เกาส์ เป็นอัจฉริยะทางด้านตัวเลข เมื่อชราแล้ว เกาส์ยังได้เล่ามุขตลกว่า เขาสามารถบวกเลขได้ก่อนที่เขาจะพูดได้เสียอีก
       กล่าวกันว่า เกอเต้สามารถแต่งบทละครสำหรับเด็กได้ตั้งแต่อายุ 6 ขวบ, ส่วนโมซาร์ทก็สามารถแต่งทำนองเพลง Twinkle Twinkle Little Star ได้ตั้งแต่อายุ 5 ขวบ. แต่สำหรับเกาส์แล้ว เป็นที่กล่าวกันว่า     เกาส์สามารถตรวจสอบแก้ไขเลขบัญชีของบิดาได้ตั้งแต่อายุ 3 ขวบเท่านั้น
      
 อย่างไรก็ตาม เหตุการณ์ที่แสดงความอัจฉริยะของเกาส์ให้คนทั่วไปได้ทราบ เกิดขึ้นเมื่อเขายังเป็นเด็กชายเกาส์อายุ 7 ขวบ ในห้องเรียนวันหนึ่ง ครูสั่งให้นักเรียนบวกเลขตั้งแต่ 1 ถึง 100 ครูเพียงแค่หันหลังไป เด็กชายเกาส์ก็ตอบขึ้นมาว่า 5,050 มื่อถูกถามว่าได้คำตอบนั้นมาได้อย่างไร เด็กชายเกาส์เขียน
   1 +   2 +   3 + ... + 100
 100 +  99 +  98 + ... +   1
 ---------------------------
 101 + 101 + 101 + ... + 101  = 101 x 100 = 10100
ดังนั้นคำตอบคือ 10100 / 2 = 5050
       เกาส์ได้รับทุนให้เข้าศึกษาในระดับวิทยาลัยและได้ค้นพบซ้ำทฤษฎีบทที่สำคัญหลายชิ้นด้วยตนเอง
การสร้างรูป n เหลี่ยมด้านเท่าด้วยไม้บรรทัดและวงเวียนจุดก้าวเปลี่ยนสำคัญเกิดขึ้น เมื่อเขาได้พิสูจน์ว่ารูปเหลี่ยมด้านเท่าจำนวน n ด้าน (n-gon) ใด ๆ สามารถเขียนได้โดยใช้เพียงไม้บรรทัดและวงเวียน ถ้าตัวประกอบที่เป็นจำนวนเฉพาะของ n ที่เป็นจำนวนคี่ล้วนเป็นจำนวนเฉพาะแฟร์มาต์ (Fermat primes) ที่ไม่ซ้ำกัน ผลงานนี้ นับว่าเป็นการต่อยอดความคิดของคณิตศาสตร์สมัยกรีกโบราณ ที่หยุดนิ่งมาถึง 2,000 ปี โดยนักคณิตศาสตร์ของกรีกโบราณ ทราบเพียงว่ามีเพียงรูป 3, 4, 5 และ 15 เหลี่ยมด้านเท่า เท่านั้น ที่สร้างได้ด้วยไม้บรรทัดและวงเวียน
        เกาส์เองรู้สึกภูมิใจกับมันมาก ถึงขนาดที่เขาขอให้มีการแกะสลักรูป 17 เหลี่ยมด้านเท่า (17-gon) ไว้ที่บนป้ายเหนือหลุมฝังศพของเขา

ทฤษฎีบทมูลฐานของพีชคณิต
       วิทยานิพนธ์ปริญญาเอกของเกาส์เป็นอีกหนึ่งความก้าวหน้าอันยิ่งใหญ่ในวงการคณิตศาสตร์สมัยนั้น เมื่อเกาส์เป็นผู้แรกที่สามารถพิสูจน์ทฤษฎีบทมูลฐานของพีชคณิต (fundamental theorem of algebra) ซึ่งกล่าวคร่าวๆ ว่าทุกสมการพหุนามอันดับใดๆ จะมีคำตอบอยู่ในรูปจำนวนเชิงซ้อนเสมอ ทฤษฎีบทนี้ช่วยให้วงการคณิตศาสตร์เข้าใจว่าจำนวนเชิงซ้อนมีบทบาทสำคัญมากเพียงใด และยังเป็นทฤษฎีบทที่นักคณิตศาสตร์เช่น ดาลองแบร์, ออยเลอร์, ลากรองช์ หรือ ลาปลาซ ต่างได้เคยพยายามพิสูจน์แล้ว ยิ่งไปกว่านั้นในช่วงชีวิตของเกาส์ เขาได้ให้บทพิสูจน์ทฤษฎีบทนี้ถึง 4 รูปแบบที่ต่างกันโดยสิ้นเชิง ซึ่งทำให้เกิดความเข้าใจในคุณสมบัติของจำนวนเชิงซ้อนมากขึ้นเรื่อย ๆ

       ในช่วงนี้เกาส์ได้รับการสนับสนุนจาก 'ดุ๊ก' หรือผู้ปกครองเมืองบรันสวิก มาโดยตลอด ทว่าเกาส์ไม่คิดว่างานทางด้านคณิตศาสตร์ จะได้รับการสนับสนุนในระยะยาวอย่างมั่นคง เกาส์จึงตัดสินใจรับตำแหน่งศาสตราจารย์ด้านดาราศาสตร์ และหัวหน้าหอสังเกตการณ์
ทางดาราศาสตร์ ที่มหาวิทยาลัยเกิตติงเกน
         ผลงานสำคัญของเกาส์ในด้านทฤษฎีจำนวน คือหนังสือที่ตีพิมพ์ในปี พ.ศ. 2344 (ค.ศ. 1801) ชื่อว่า Disquisitiones Arithmeticae เนื้อหาในหนังสือเล่มนี้ เกี่ยวกับการนำเสนอ เลขคณิตมอดุลาร์ (modular arithmetic) ที่เป็นระบบจำนวนภายใต้การหารแบบเหลือเศษ และบทพิสูจน์แรกของทฤษฎี ส่วนกลับกำลังสอง (quadratic reciprocity) ซึ่งในปัจจุบันมีบทพิสูจน์ที่แตกต่างกันหลายแบบแต่เกาส์เป็นคนแรกที่พิสูจน์ทฤษฎีบทนี้ได้ ในปี พ.ศ. 2339 (ค.ศ. 1796)
ผลงานเกี่ยวกับทฤษฎีแม่เหล็กและไฟฟ้า
          ในปี พ.ศ. 2374 (ค.ศ. 1831) เกาส์ได้ร่วมงานกับ วิลเฮล์ม เวเบอร์ ซึ่งเป็นนักฟิสิกส์ วิจัยเกี่ยวกับแม่เหล็ก สร้างสหพันธ์แม่เหล็ก (Magnetic Union) โดยร่วมมือกับประเทศต่างๆ ทั่วโลก เพื่อศึกษาเกี่ยวกับแม่เหล็กโลก งานเกี่ยวกับแม่เหล็กของเกาส์และเวเบอร์ ได้ถูกนำไปพัฒนาเป็นเครื่องโทรเลขในยุคแรกๆ นอกจากนี้ยังค้นพบ กฎของเกาส์ ในสนามไฟฟ้า ซึ่งนำไปสู่ กฎของเคิร์ชฮอฟฟ์ (โดยรวมกับไดเวอร์เจนซ์ของ กฎของแอมแปร์) ที่เป็นหนึ่งในกฎพื้นฐานที่สุดของวงจรไฟฟ้า
          ในความเรียง Treatise on Electricity and Magnetism (1873) ที่มีชื่อเสียงของ เจมส์ คลาก แมกซ์เวลล์ เขาได้กล่าวชื่นชมเกาส์ว่า เกาส์ได้สร้างวิทยาศาสตร์ของแม่เหล็กขึ้นมาเลยทีเดียว

วิธีกำลังสองต่ำสุด ความผิดพลาดในการวัด และการกระจายตัวแบบเกาส์
          ในปี ค.ศ. 1809 เกาส์ได้ทำงานวิจัยเกี่ยวกับเรื่องการเคลื่อนไหวของวัตถุท้องฟ้า และได้สร้างค่าคงที่ gaussian gravitational constant ขึ้นมา นอกจากนี้ในงานวิจัยชิ้นนี้ยังได้คิดค้น วิธีกำลังสองต่ำสุด (method of least squares) ซึ่งเป็นวิธีที่ใช้กันทั่วไปในวิทยาศาสตร์ปัจจุบันในการลดผลกระทบจากค่าความผิดพลาดจากการวัดให้เหลือน้อยที่สุด โดยเกาส์ได้พิสูจน์ถึงความถูกต้องของวิธีนี้ เมื่อมีสมมุติฐานว่าค่าความผิดพลาดที่เกิดจากการวัดมี การกระจายตัวแบบปกติ (normal distribution) (เป็นสาเหตุให้คนทั่วไปนิยมเรียกกันว่าการกระจายตัวแบบเกาส์(gaussian distribution)) (ดูรายละเอียดเพิ่มเติมที่ ทฤษฎีบทเกาส์-มาร์คอฟ) 
          แม้ว่าวิธีกำลังสองต่ำสุดนี้มีนักคณิตศาสตร์ชื่อดังคือ เอเดรียน-แมรี เลอจองด์ ได้นำเสนอไว้ก่อนแล้วในปี พ.ศ. 2348 (ค.ศ. 1805) แต่เกาส์อ้างว่าเขาคิดค้นและใช้วิธีนี้มาตั้งแต่ปี พ.ศ. 2338 (ค.ศ. 1795)

เรขาคณิตนอกแบบยุคลิด
          ที่ผ่านมาจะเห็นว่า งานที่ตีพิมพ์ของเกาส์แต่ละอย่างนั้น ส่งผลกระทบต่อวงการวิชาการมากมายมหาศาล แต่อย่างไรก็ตาม งานของเกาส์ที่ไม่ถูกตีพิมพ์ก็ยิ่งใหญ่ไม่แพ้กัน ยกตัวอย่างเช่น เกาส์ได้ค้นพบ เรขาคณิตนอกแบบยุคลิด (non-Euclidean geometries) ซึ่งส่งผลกระทบสำคัญ ต่อจินตนาการของมนุษย์ต่อธรรมชาติและโครงสร้างจักรวาล เทียบเคียงได้กับการปฎิวัติของโคเปอร์นิคัส ในสาขาดาราศาสตร์เลยทีเดียว. เนื่องจากตั้งแต่สมัยยุคลิด จนกระทั่งถึงสมัยของเกาส์นั้น สัจพจน์ทั้งหลายในเรขาคณิตแบบยุคลิด ถือว่าเป็นความจริงที่หลีกเลี่ยงไม่ได้ แต่อย่างไรก็ตาม นักคณิตศาสตร์รุ่นถัดมาจนถึงเกาส์ สงสัยการกำหนดสัจพจน์บางอย่างของยุคลิดมาตลอด โดยเฉพาะสัจพจน์เส้นขนาน ที่กล่าวว่ากำหนดเส้นตรงหนึ่งเส้น และกำหนดจุดหนึ่งจุดที่ไม่ได้อยู่บนเส้นตรงนั้น จะมีเพียงเส้นตรงเส้นเดียวที่ผ่านจุดนั้นและขนานกับเส้นตรงเส้นแรก นักคณิตศาสตร์ได้สงสัยมานานว่า ทำไมเรื่องเส้นขนานนี้ถึงต้องเป็นสัจพจน์ เนื่องจากสัจพจน์ควรจะเป็นอะไรที่เข้าใจได้ง่ายๆ เช่น สัจพจน์ของจุด เป็นต้น เรื่องเส้นขนานที่ค่อนข้างซับซ้อนนั้น ควรที่จะเป็นทฤษฎีบท คือสามารถพิสูจน์ได้ด้วยสัจพจน์ที่เป็นมูลฐานอื่นๆ  มากกว่าที่จะเป็นสัจพจน์เสียเอง ยุคลิดเองก็ดูลังเลกับสัจพจน์ข้อนี้ โดยได้ให้เป็นสัจพจน์ข้อสุดท้ายในระบบเรขาคณิตของเขา อย่างไรก็ตาม ไม่มีนักคณิตศาสตร์คนใดสามารถพิสูจน์สัจพจน์เส้นขนานนี้ได้สำเร็จ
          โดยจากสมุดบันทึกของเกาส์ที่พบ เราทราบว่า เกาส์เองก็ได้ลองพยายามพิสูจน์ประเด็นนี้ เมื่ออายุ 15 ปี และก็ล้มเหลวเช่นเดียวกันกับคนอื่นๆ อย่างไรก็ตาม ความล้มเหลวของเกาส์ต่างจากคนอื่นๆ ตรงที่ในเวลาถัดมาเกาส์เริ่มตระหนักว่า ระบบเรขาคณิตแบบยุคลิด ไม่ใช่ระบบเรขาคณิตเพียงระบบเดียวที่เป็นไปได้ เกาส์คิดค้นประเด็นนี้อยู่หลายปี และในปี พ.ศ. 2363 (ค.ศ. 1820) เกาส์ก็ได้ทฤษฎีบทเต็มรูปแบบของ เรขาคณิตนอกแบบยุคลิด (ซึ่งชื่อนี้เป็นชื่อที่เกาส์ตั้งเอง อ้างอิงจาก Werke, vol. VIII, pp. 159-268, 1900)
          อย่างไรก็ตาม เกาส์ไม่ได้เปิดเผยผลงานชิ้นนี้ต่อสาธารณะ จนกระทั่งในปี พ.ศ. 2372 (ค.ศ. 1829) และ พ.ศ. 2375 (ค.ศ. 1832) ซึ่งโลบาชอฟสกี (Lobachevsky) นักคณิตศาสตร์ชาวรัสเซีย และ ยาโนส โบลยาอี (Johann Bolyai) นักคณิตศาสตร์ชาวฮังการี ได้ตีพิมพ์งานชิ้นนี้ (โดยไม่ขึ้นต่อกัน)เช่นเดียวกัน ซึ่งพ่อของโบลยาอี ซึ่งเป็นเพื่อนของเกาส์ ได้นำข่าวดีของลูกชายตัวเองมาเล่าให้เกาส์ฟัง และก็ต้องตกตะลึง เมื่อเกาส์ไปรื้องานเก่า ๆ ในลังของตัวเองมาให้ดู โดยโบลยาอีผู้ลูกถึงกับพูดว่า "ผมรู้สึกเหมือนเดินอยู่ในฝ่ามือของยักษ์ใหญ่"
          เหตุผลที่เกาส์ไม่ยอมตีพิมพ์งานของตัวเองนั้นเรียบง่ายมาก เพราะเนื่องจากในเยอรมันสมัยนั้น มีนักปรัชญาที่ยิ่งใหญ่ที่สุดคนหนึ่งคือ อิมมานูเอิล คานท์อยู่ โดยคานท์ได้คิดและวางหลักการต่างๆ เกี่ยวกับความรู้มนุษย์ไว้มากมาย และคนทั่วไปก็ยอมเชื่อฟังแนวคิดของคานท์ โดยคานท์ได้ให้ความเห็นไว้ว่า  ระบบเรขาคณิตของยุคลิด เป็นความเป็นไปได้เพียงหนึ่งเดียวในการคิดเกี่ยวกับเรื่องของ มิติ อวกาศ         หรือ ปริภูมิ (space) ซึ่งเกาส์ทราบเป็นอย่างดีว่าความคิดนี้ผิด แต่ด้วยเกาส์เป็นคนที่มีบุคลิกรักสันโดษและความสงบ เกาส์จึงตัดสินใจที่จะไม่ไปโต้เถียงเรื่องนี้ ซึ่งเป็นเรื่องใหญ่มาก กับเหล่านักปรัชญาที่สนับสนุนแนวคิดของคานท์

ฟังก์ชันเชิงวงรี
           นอกจากนั้น ในงานที่ไม่ได้ตีพิมพ์อื่นๆ เกาส์ยังได้ค้นพบทฤษฎีของ ฟังก์ชันเชิงวงรี (elliptic functions) หลาย ๆ อย่าง ซึ่งสำคัญมากในสาขาคณิตวิเคราะห์ (mathematical analysis) ก่อนหน้า ปีเตอร์ กุสตาฟ ยาโคบี และ นีลส์ เฮนริก อาเบล ซึ่งได้ชื่อว่าเป็นผู้ค้นพบสองคนแรก ตั้งแต่ตอนที่สองคนนี้ยังไม่เกิดทุกครั้งที่ยาโคบีค้นพบสิ่งใหม่ ๆ ยาโคบีจะมาหาเกาส์ด้วยความดีใจ และในแทบทุกครั้ง ยาโคบีต้องถึงกับตะลึง เมื่อเกาส์ได้โชว์งานเก่า ๆ ของตัวเองในลังใบเดิมๆ ให้ดู ยาโคบีถึงกับพูดกับน้องชายของเขาว่า "วงการคณิตศาสตร์คงจะพัฒนาไปอีกไกลเป็นแน่แท้ ถ้าพวกดาราศาสตร์ปฏิบัติ ไม่ดึงตัวสุดยอดอัจฉริยะผู้นี้ ออกไปจากวิถีที่ยิ่งใหญ่ของเขา("Mathematics would be in a very different position if practical astronomy had not diverted this colossal genius from his glorious career")

อ้างอิงมาจาก  http://www.thaigoodview.com/node/59962?page=0%2C3
                        http://www.thaigoodview.com/node/59962?page=0%2C4

ไม่มีความคิดเห็น:

แสดงความคิดเห็น